
An Exploration of Novel Beam Search Variants

Bryan McKenney
Department of Computer Science

University of New Hampshire, USA
Bryan.McKenney@unh.edu

Abstract

Anytime heuristic search algorithms, which find a poor solu-
tion quickly and better ones over time, are useful when there
is an unknown amount of time to solve a planning problem.
Rectangle search (Lemons et al. 2024) is a state-of-the-art
anytime algorithm based on beam search, but it has some
drawbacks — a parameter that is hard to set and poor per-
formance in some planning domains. In this paper, I explore
the performance of three novel beam search variants, two of
which are anytime algorithms inspired by rectangle search,
and show that one of them, outstanding search, has potential
as an alternative to rectangle search.

Introduction
Anytime heuristic search algorithms are useful when there is
an unknown amount of time to solve a problem. Anytime al-
gorithms quickly find a suboptimal solution and then find
increasingly better solutions over time, possibly until the
optimal solution is found. Rectangle search (Lemons et al.
2024) is an anytime heuristic search algorithm that is based
on beam search (Newell 1978), which is breadth-first search
with a limited width. Beam search is not anytime, nor is it
complete, but rectangle search is both. It keeps an open list
for each depth level and expands one node from each exist-
ing level at each iteration i and then i nodes from a num-
ber of new depth levels equal to the aspect ratio parameter.
Rectangle search is competitive with beam search in its first
solution quality and with other anytime algorithms, such as
ARA* (Likhachev, Gordon, and Thrun 2003), in its anytime
performance. In many domains, using a large aspect ratio
such as 500 will result in better performance than a small
aspect ratio such as 1. However, there are some domains for
which even this trick does not help. An example is given
in Figure 1, where rectangle search with an aspect ratio of
1 and of 500 both do very poorly compared to ARA* and
CABS in the structured grid pathfinding problem 64room
(Sturtevant 2012). It is not clear how to set the aspect ratio
to improve performance in this domain, or if any setting will
lead to good performance.

Wheeler Ruml proposed a more flexible anytime search
algorithm called outstanding search that has some similari-
ties to rectangle search and incorporates ideas from the orig-
inal beam search (Newell 1978), which has a variable-width
beam, and limited discrepancy search (Harvey and Ginsberg

Figure 1: The anytime performance of various algorithms,
including rectangle search, on handcrafted grid pathfinding
problems. The dot indicates when a solution has been found
for every instance. Plot from Lemons et al. (2024).

1995), which assumes that the heuristic is equally inaccu-
rate everywhere in the search space and tries to account for
that. Outstanding search, like rectangle, keeps an open list
for each depth level, but, unlike rectangle, it can compare
nodes across depth levels and be more selective about what
to expand next, and it also does not have an aspect ratio pa-
rameter.

In this paper, I describe three novel beam search variants
— threshold bead search, outstanding search, and outstand-
ing rectangle search — and compare them to the state-of-
the-art algorithms bead search (Lemons et al. 2022) and
rectangle search on several planning domains. Threshold
bead search and outstanding rectangle search do not appear
promising, but outstanding search has some potential as a
more consistent algorithm than rectangle search that finds
decent first solutions.

Previous Work

In this section, I describe the algorithms beam search, bead
search, rectangle search, and limited discrepancy search.

Beam Search
Beam search was invented by Newell (1978). It aims to find
a single solution quickly but has no guarantee that it will
find a solution even when one exists (i.e. it is not a complete
algorithm). Beam search works by selecting a set of nodes
to expand at each depth and throwing out the rest. Modern
beam search uses a beam width parameter b to specify the
number of nodes that will be kept at each depth; it expands
the b nodes with the lowest cost-to-go estimates h. Newell’s
beam search is quite different. Instead of a parameter to fix
the width of the beam, it has a threshold parameter e. Any
node at a new depth with score x that satisfies |x− x∗| ≤ e,
where x∗ is the best score of any node at that depth, will
be retained in the beam. This means that the beam width
can fluctuate across depth levels depending on how many
promising nodes there appear to be at each level. The “score”
mentioned is just some heuristic measure of how promising
a node is; Newell uses the likelihood that a state would fol-
low the previous state.

Bead Search
Bead search was introduced by Lemons et al. (2022). It is
simply modern beam search (fixed-width beam) that uses
the distance-to-go estimates d instead of the cost-to-go esti-
mates h to determine which b nodes will be expanded at the
next depth. In practice, this leads to finding a solution faster.

Rectangle Search
Rectangle search is a complete anytime algorithm devel-
oped by Lemons et al. (2024). Unlike beam search, which
shoots through the search space once and never returns to a
depth it has previously expanded nodes at, rectangle search
returns to the shallowest depth in each iteration and grad-
ually increases its “beam width” until it explores the en-
tire search space. It keeps an open list for each depth level,
and at each iteration i it expands 1 node from each exist-
ing depth and then i nodes from aspectRatio new depths,
where aspectRatio is a parameter of the algorithm. This
means that the algorithm explores an ever-expanding square
(when aspectRatio = 1) or rectangular portion of the
search space. Aspect ratios of 1 and 500 are compared by
Lemons et al. (2024), and each is good in different domains,
although rectangle-500 seems to be better overall.

While rectangle search has state-of-the-art performance in
most domains, there are some where it is sub-par (as shown
in Figure 1), including grid pathfinding on handcrafted or
structured (as opposed to completely randomly generated)
grids.

Limited Discrepancy Search
Limited discrepancy search (LDS) was invented by Harvey
and Ginsberg (1995). It explores paths through the search
tree with an increasing number of discrepancies from the
“best” path according to the heuristic in order to account
for heuristic error. The assumption is that the heuristic is
equally inaccurate everywhere in the tree. It is not important
to know exactly how LDS works to understand this paper —
the idea of discrepancies is adopted for threshold bead and
outstanding search, but used in a completely different way.

Approach
In this section, I describe the novel beam search variants
explored in this work — threshold bead search, outstand-
ing search, and outstanding rectangle search — and then the
planning domains in which they are tested. I implemented
these algorithms in C++ in the codebase of Lemons et al.
(2024).

Threshold Bead Search
Threshold bead search is Newell (1978)’s beam search but
using d as the score function instead of likelihoods. I chose
to use d instead of h because of the success of bead search
over beam search. At each depth, threshold bead calculates
a discrepancy score for each node

discrepancyScoren = dn − dbest

where dn is the d-value of node n and dbest is the lowest
d-value of any node at that depth. It retains all nodes at that
depth that satisfy

discrepanyScoren ≤ threshold

where threshold is a parameter to the algorithm. Note
that if all nodes at a depth have the same d value, they will
all have discrepancy scores of 0 and thus will all be retained
for expansion.

Outstanding Search
Outstanding search was invented by Wheeler Ruml. It uses
the same definition of discrepancy scores that threshold bead
uses, and it compares nodes across depth levels using their
discrepancy scores when deciding which to expand. Out-
standing search only expands one promising-looking node
from any depth per iteration instead of one node from each
depth and many more at new depths. This gives it the flexi-
bility to explore outstanding parts of the search space rather
than exploring in a strictly rectangular pattern. Like with
LDS, the assumption here is that the heuristic (d, in this
case) is equally inaccurate everywhere in the search space,
which is why discrepancies can be used to compare nodes at
different depth levels.

Algorithm 1 outlines outstanding search. Like rectangle
search, it utilizes an open list for each depth level (line 1).
The smallest d of any node seen at each depth is recorded
as well (line 2), and updated whenever a node is added to
an open list, as can be seen in Algorithm 2. The smallest
d value for an open list is used to calculate a discrepancy
score for each node in that open list according to Algorithm
3. Algorithm 4 shows how nodes are selected and expanded.
The node with minimal discrepancy score across depths is
selected (line 29) and its children are added to the open list
at the next depth level (line 47). If there is a tie between
nodes of the same depth, the node with lowest f is selected,
and, if there is still a tie, the node with lowest h is selected.
If there is a tie between nodes of different depths, the node
with shallowest depth is selected. A child is pruned if its f
is greater than or equal to the incumbent solution cost (line
40).

Algorithm 1: OUTSTANDINGSEARCH(k, start)

1: openlists← [∅,∅]
2: dBestInList← [∞,∞]
3: closed← ∅
4: incumbent← node with g =∞
5: nodesExpanded← 0
6: nodesExpandedAtDeepestDepth← 0
7: children← expand(start)
8: for each child in children do
9: ADDTOOPENLIST(child, 0)

10: CALCDISCREPANCYSCORES(0)
11: depth← 1
12: while non-empty lists exist in openlists do
13: SELECTANDEXPAND
14: if nodesExpandedAtDeepestDepth = k or

nodesExpanded = k · depth then
15: CALCDISCREPANCYSCORES(depth)
16: extend openlists with ∅
17: extend dBestInList with∞
18: increment depth
19: nodesExpandedAtDeepestDepth← 0
20: return incumbent

Algorithm 2: ADDTOOPENLIST(n, i)

21: add n to openlists[i]
22: if d(n) < dBestInList[i] then
23: dBestInList[i]← d(n)
24: return true
25: return false

Outstanding search has a cautiousness parameter k which
ensures that enough exploration is done in previous depths
before unlocking the next depth level for expansion. The cri-
terion for unlocking the next depth is that k nodes must have
been expanded at the deepest unlocked depth or k · depth
nodes must have been expanded across all depths (line 14),
where depth is the current number of depth levels in the
search (excluding the locked depth). There is one exception
to the cautiousness rule — if there are no nodes to expand
except at the locked depth, that depth is unlocked regardless
of the number of nodes that have been expanded so far. Dis-
crepancy scores are first calculated for an open list when that
depth is unlocked (line 15) and they must be updated when-
ever a node with d lower than the previous best is added to
the open list (line 49).

Outstanding Rectangle Search
Outstanding rectangle search, as the name implies, is a com-
bination of outstanding search and rectangle search. Specif-
ically, in each iteration i, a node to expand is selected in
the same manner as in outstanding search — by the low-
est discrepancy score across depth levels. After that node
is expanded, 1 node is expanded from all existing lower
depths and then i nodes are expanded from aspectRatio
new depths, where aspectRatio is a parameter of the algo-
rithm. Note that outstanding rectangle search does not need

Algorithm 3: CALCDISCREPANCYSCORES(i)

26: for each n in openlists[i] do
27: discrepancyScore(n)← d(n)− dBestInList[i]

Algorithm 4: SELECTANDEXPAND

28: repeat
29: n ← node with min discrepancyScore across

openlists[0..depth− 1] // includes tie-breaking
30: i← index of n’s openlist
31: remove n from openlists[i]
32: until f(n) < g(incumbent)
33: add n to closed
34: children← expand(n)
35: increment nodesExpanded
36: if i = depth− 1 then
37: increment nodesExpandedAtDeepestDepth
38: dBestChanged← false
39: for each child in children do
40: if f(child) < g(incumbent) then
41: if child is a goal then
42: incumbent← child
43: report new incumbent
44: else
45: dup← child’s entry in closed
46: if child not in closed or g(child) < g(dup)

then
47: dBestChanged ← ADDTOOPEN-

LIST(child, i+ 1) or dBestChanged

48: if dBestChanged and i+ 1 < depth then
49: CALCDISCREPANCYSCORES(i+ 1)

the cautiousness parameter k because it goes deeper with
each iteration. Thus, the only difference between this algo-
rithm and rectangle search is which depth it returns to at
the beginning of each iteration: rectangle always returns to
depth 1, while outstanding rectangle can go to whichever
depth it deems has an outstanding node.

Test Domains
I tested these algorithms against bead and rectangle on the
following planning domains (on the same instances used by
Lemons et al. (2024), 100 instances per domain):

• tiles. The 4x4 sliding-tile puzzle, commonly referred to
as the 15-puzzle. unit, inv, and heavy cost models are
used.

• vacuum. A robot on a 200x200 grid with 4-way move-
ment must clean up 10 dirt tiles. unit and heavy cost
models are used.

• pancake. Parts of a stack of 70 pancakes of different
sizes must be flipped to turn the stack into a pyramid.
unit and heavy cost models are used.

• 64room. Grid pathfinding with 8-way movement on a
map containing 64 rooms. Map from Sturtevant (2012).
unit cost model is used.

• orz100d. Grid pathfinding with 8-way movement on a
map from the video game Dragon Age: Origins. Map
from Sturtevant (2012). unit cost model is used.

Results
Bead was tested with beam widths of 30, 100, 300, and 1000.
Threshold bead (thresholdbead) was tested with thresholds
of 2, 4, and 6 (except in the vacuum domain, where 30, 100,
and 150 were used instead). Rectangle and outstanding rect-
angle (outstandingrect) were tested with aspect ratios of 1
and 500. Outstanding was tested with cautiousness values of
2, 20, 200, and 2000. All algorithms had 7.5G of memory
and 5 minutes to solve each instance.

In this section, I will first present the results of these
experiments in terms of anytime performance, and then in
terms of the first solution. Then I will show some visualiza-
tions of how the anytime algorithms search.

Anytime Performance
The following sets of three plots show the average quality,
number of instances solved, and solution cost, respectively,
as a function of time in a certain domain with a certain cost
model. Average quality is calculated by the current best solu-
tion cost for an instance divided by the optimal solution cost
for that instance, averaged across all instances. The dot indi-
cates when a solution has been found for all 100 instances.
Bead and thresholdbead are omitted from these plots for
clarity and because they do not have anytime performance
— they will be shown in the first solution section.

In tiles (Figure 2, Figure 3, and Figure 4), outstanding is
in-between rectangle-1 and rectangle-500. Outstandingrect-
1 is slightly worse than rectangle-1 and outstandingrect-500
is much worse than rectangle-500. k = 2 is the best choice
for outstanding here.

In vacuum (Figure 5 and Figure 6), outstanding is much
better than rectangle-1 and is similar to rectangle-500.
Outstandingrect-1 is about the same as rectangle-1 and
outstandingrect-500 is much worse than rectangle-500. k =
20 is the best choice for outstanding here.

In pancake (Figure 7 and Figure 8), outstanding failed to
solve any instances because it ran out of memory (more on
this later). Outstanding-500 lines up with outstanding-1 and
rectangle-1 here and they are all much worse than rectangle-
500.

In the grid pathfinding domains 64room (Figure 9) and
orz100d (Figure 10), outstanding-2 is between rectangle-1
and rectangle-500 (although in 64room, it finds all solutions
faster than rectangle-500). Outstandingrect and rectangle
are closely matched (although in 64room, outstandingrect-1
outperforms rectangle-1). k = 2 is the best choice for out-
standing here.

Overall, outstandingrect is a worse version of rectangle
and outstanding has performance in-between rectangle-1
and rectangle-500 (besides on pancake instances).

First Solution
The following sets of plots show the first solution cost and
time for the algorithms in a certain domain with different

cost models. Each point is a different parameter value. If an
algorithm with a certain parameter value could not solve all
instances, the point is not plotted.

In tiles (Figure 11), bead is the best and thresholdbead is a
close second. Outstanding is competitive with rectangle and
outstandingrect is bad.

In vacuum (Figure 12), thresholdbead and outstandin-
grect are bad. Outstanding is decent. There is no clear best
algorithm here.

In pancake (Figure 13), thresholdbead and outstanding
failed to solve all instances with all parameter values be-
cause they ran out of memory. The same is true for outstand-
ingrect with one of its parameter values.

In 64room (Figure 14 left), outstanding is the best, out-
standingrect is second, and thresholdbead is bad. In orz100d
(Figure 14 right), rectangle is the best, outstanding is second,
and outstandingrect and thresholdbead do not do well.

Overall, outstandingrect is again a worse version of rect-
angle, outstanding has decent performance (besides on pan-
cake instances), and thresholdbead is not good.

Visualization
Figure 15 shows visualizations of the nodes that
outstanding-2, rectangle-1, outstandingrect-1, rectangle-
500, and outstandingrect-500 expand on a randomly-
generated 11-puzzle instance. The “y-axis” is the depth
and the “x-axis” is the number of nodes expanded. The
full visualization is shown and a portion outlined in red is
zoomed in to show detail. The color of a cell represents
when that node was expanded during the search — lightest
pink was expanded first and darkest green was expanded
last. The black dots show where goals were found.

It can be seen that outstanding-2 searches deeper than
rectangle-1 but not as deeply as rectangle-500. Rectangle
has a clean gradient because it follows its rigid expan-
sion strategy, but outstanding jumps around between depth
levels throughout the search, as expected. Outstandingrect
searches very similarly to rectangle, except it focuses on
shallower depths as the search progresses, probably due to
the tie-breaking.

Additional Experiments
I tested changing two things from the previous experiment:
the formula for discrepancy scores and the tie-breaking strat-
egy of outstanding search across depths.

Relative Discrepancy Scores
Recall the definition of a discrepancy score:

discrepancyScoren = dn − dbest

I also tested relative discrepancy scores:

discrepancyScoren = (dn − dbest)/dbest

Figure 16 shows the anytime performance of outstanding-
2 with relative discrepancy scores in tiles compared to
rectangle-1 and rectangle-500. Whereas with absolute dis-
crepancy scores, outstanding-2 does well in this domain,

10 4 10 3 10 2 10 1

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

qu
al

ity

10 4 10 3 10 2 10 1

Time (seconds)

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 2 10 1 100 101 102

Time (seconds)

50

60

70

80

90

So
lu

tio
n

co
st

15 puzzle (unit)
rectangle-1
rectangle-500
outstanding-2
outstanding-20
outstanding-200
outstanding-2000
outstandingrect-1
outstandingrect-500

Figure 2: Anytime performance in tiles (unit) domain.

10 4 10 3 10 2 10 1

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

qu
al

ity

10 4 10 3 10 2 10 1

Time (seconds)

0

20

40

60

80

100
Nu

m
be

r o
f i

ns
ta

nc
es

 so
lv

ed

10 2 10 1 100 101 102

Time (seconds)

50

60

70

80

90

So
lu

tio
n

co
st

15 puzzle (inv)
rectangle-1
rectangle-500
outstanding-2
outstanding-20
outstanding-200
outstanding-2000
outstandingrect-1
outstandingrect-500

Figure 3: Anytime performance in tiles (inv) domain.

10 4 10 3 10 2 10 1

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

qu
al

ity

10 4 10 3 10 2 10 1

Time (seconds)

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 2 10 1 100 101 102

Time (seconds)

300

400

500

600

700

800

900
So

lu
tio

n
co

st
15 puzzle (heavy)

rectangle-1
rectangle-500
outstanding-2
outstanding-20
outstanding-200
outstanding-2000
outstandingrect-1
outstandingrect-500

Figure 4: Anytime performance in tiles (heavy) domain.

10 5 10 4 10 3 10 2 10 1 100 101

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

qu
al

ity

10 5 10 4 10 3 10 2 10 1 100 101

Time (seconds)

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 2 10 1 100 101 102

Time (seconds)

0

200

400

600

800

1000

So
lu

tio
n

co
st

vacuum 200x200 10 (unit)
rectangle-1
rectangle-500
outstanding-2
outstanding-20
outstanding-200
outstanding-2000
outstandingrect-1
outstandingrect-500

Figure 5: Anytime performance in vacuum (unit) domain.

10 5 10 4 10 3 10 2 10 1 100 101

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

qu
al

ity

10 5 10 4 10 3 10 2 10 1 100 101

Time (seconds)

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 2 10 1 100 101 102

Time (seconds)

0

1000

2000

3000

4000

5000

So
lu

tio
n

co
st

vacuum 200x200 10 (heavy)
rectangle-1
rectangle-500
outstanding-2
outstanding-20
outstanding-200
outstanding-2000
outstandingrect-1
outstandingrect-500

Figure 6: Anytime performance in vacuum (heavy) domain.

10 3 10 2 10 1

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

qu
al

ity

10 3 10 2 10 1

Time (seconds)

0

20

40

60

80

100
Nu

m
be

r o
f i

ns
ta

nc
es

 so
lv

ed

10 2 10 1 100 101 102

Time (seconds)

68

69

70

71

72

So
lu

tio
n

co
st

pancake (unit)
rectangle-1
rectangle-500
outstandingrect-1
outstandingrect-500
outstanding-2
outstanding-20
outstanding-200
outstanding-2000

Figure 7: Anytime performance in pancake (unit) domain.

10 3 10 2 10 1

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

qu
al

ity

10 3 10 2 10 1

Time (seconds)

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 2 10 1 100

Time (seconds)

2250

2300

2350

2400

2450
So

lu
tio

n
co

st

pancake (heavy)
rectangle-1
rectangle-500
outstandingrect-1
outstandingrect-500
outstanding-2
outstanding-20
outstanding-200
outstanding-2000

Figure 8: Anytime performance in pancake (heavy) domain.

10 4 10 3 10 2

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

qu
al

ity

10 4 10 3 10 2

Time (seconds)

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 4 10 3 10 2

Time (seconds)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

So
lu

tio
n

co
st

64room (unit)
rectangle-1
rectangle-500
outstanding-2
outstanding-20
outstanding-200
outstanding-2000
outstandingrect-1
outstandingrect-500

Figure 9: Anytime performance in 64room (unit) domain.

10 4 10 3

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

qu
al

ity

10 4 10 3

Time (seconds)

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 4 10 3

Time (seconds)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

So
lu

tio
n

co
st

orz100d (unit)
rectangle-1
rectangle-500
outstanding-2
outstanding-20
outstanding-200
outstanding-2000
outstandingrect-1
outstandingrect-500

Figure 10: Anytime performance in orz100d (unit) domain.

10 3 10 2 10 1

wall time

102

103

so
lu

tio
n

co
st

tiles (unit)
bead
thresholdbead
rectangle
outstanding
outstandingrect

10 3 10 2 10 1

wall time

102

103

so
lu

tio
n

co
st

tiles (inv)
bead
thresholdbead
rectangle
outstanding
outstandingrect

10 3 10 2 10 1

wall time

103

104

so
lu

tio
n

co
st

tiles (heavy)
bead
thresholdbead
rectangle
outstanding
outstandingrect

Figure 11: First solution performance in tiles domain.

10 2 10 1 100

wall time

900

1000

1100

1200

1300

so
lu

tio
n

co
st

vacuum (unit)
bead
thresholdbead
rectangle
outstanding
outstandingrect

10 2 10 1 100

wall time

5000

5500

6000

6500

7000

so
lu

tio
n

co
st

vacuum (heavy)
bead
thresholdbead
rectangle
outstanding
outstandingrect

Figure 12: First solution performance in vacuum domain.

10 3 10 2 10 1

wall time

70

80

90

100

110

so
lu

tio
n

co
st

pancake (unit)
bead
thresholdbead
rectangle
outstanding
outstandingrect

10 3 10 2 10 1

wall time

2500

2600

2700

2800

2900

so
lu

tio
n

co
st

pancake (heavy)
bead
thresholdbead
rectangle
outstanding
outstandingrect

Figure 13: First solution performance in pancake domain.

10 3

wall time

0.002

0.003

0.004

0.005

0.006

0.007

so
lu

tio
n

co
st

+2.042e1 64room (unit)

bead
thresholdbead
rectangle
outstanding
outstandingrect

10 4 10 3

wall time

20.36

20.37

20.38

20.39

20.40

20.41

20.42

20.43

20.44

so
lu

tio
n

co
st

orz100d (unit)

bead
thresholdbead
rectangle
outstanding
outstandingrect

Figure 14: First solution performance in grid pathfinding domains 64room and orz100d.

(a) Outstanding-2

(b) Rectangle-1

(c) Outstandingrect-1

(d) Rectangle-500

(e) Outstandingrect-500

Figure 15: Visualizations of how outstanding-2, rectangle-1, outstandingrect-1, rectangle-500, and outstandingrect-500 search
on the same 11-puzzle instance.

it does terribly with relative, not even able to solve all in-
stances in time. It performs worse in vacuum as well, and no
better in the grid pathfinding domains.

Threshold bead was also unable to solve instances when
using relative discrepancy scores.

Alternate Tie-Breaking
Recall that outstanding search (and outstanding rectangle
search) breaks ties across depth levels by the shallower
depth. The idea was to expand more nodes at shallow depths
so that deeper depths would gradually get more (and hope-
fully better) options. However, I visualized how outstanding-
2 was searching on a pancake instance, as can be seen in
Figure 17a, and I noticed that it was searching in layers, al-
ways sticking to the shallowest depth when possible. This
is why it would run out of memory before finding any solu-
tions — it was going much too wide and not deep enough. I
tried tie-breaking by deeper depth instead, and the behavior
completely changed, as can be seen in Figure 17b. This time,
outstanding rapidly went deep enough to find solutions.

Figure 18 shows that outstanding-2 with this deep tie-
breaking scheme performs quite competitively in the pan-
cake domain, whereas before it could not solve any in-
stances. Outstandingrect-1 also outperforms rectangle-1,
which it did not before. The same phenomena are true in
the grid domains, as can be seen in Figure 19 and Figure
20, except outstandingrect-500 does much worse than be-
fore (and outstanding does not find all solutions in 64room).
However, outstanding’s outstanding performance does not
extend to the tiles and vacuum domains, where it does worse
than with shallow tie-breaking, as can be seen in Figure 21
and Figure 22. Outstandingrect also performs worse in these
domains.

Discussion
Threshold bead fails to beat bead and outstanding rectan-
gle fails to beat rectangle in most tested domains, so they
do not appear to be promising alternatives. On the other
hand, outstanding search does stand out — not as an al-
gorithm that is superior to rectangle across domains, but as
one that is more consistent with a single parameter value.
While rectangle-1 is superior to rectangle-500 in some do-
mains (tiles) and the opposite is true in others (vacuum, pan-
cakes, and grid pathfinding), with the reasonable cautious-
ness value of k = 2, outstanding performs better than the
weaker of the two rectangle searches across domains, and, in
vacuum, even performs similarly to the stronger of the two.
Outstanding also finds decent first solutions in comparison
to rectangle.

Of course, outstanding also utterly fails on the pancake
domain. Unless, that is, deep tie-breaking is used, in which
case it has superior performance in the pancake and grid do-
mains but worse performance in tiles and vacuum. This is a
promising avenue for future research — automatic methods
of setting the tie-breaking strategy based on instance fea-
tures could have potential, or even just alternating between
shallow and deep tie-breaking.

For threshold bead, it would be interesting to try having

an average beam width parameter and let the algorithm de-
termine the threshold it should set to approximate that aver-
age beam width for a given instance. It would also be useful
to find out if small discrepancies in d are even informative
about which node is better in different domains.

Conclusion
In this paper, I introduced the novel beam search variants
threshold bead search, outstanding search, and outstanding
rectangle search, the latter two of which are anytime algo-
rithms based on rectangle search. These algorithms are more
flexible than bead and rectangle search, but, from this initial
exploration, that flexibility does not lead to better perfor-
mance. However, outstanding search does have more consis-
tent performance with an easy-to-set cautiousness parameter
than rectangle search with its difficult-to-set aspect ratio pa-
rameter, as well as superior performance on some domains
when using an alternate tie-breaking strategy, so it has po-
tential.

References
Harvey, W. D.; and Ginsberg, M. L. 1995. Limited Discrep-
ancy Search. In Proceedings of IJCAI-95.
Lemons, S.; López, C. L.; Holte, R. C.; and Ruml, W. 2022.
Beam Search: Faster and Monotonic. In Proceedings of
AAAI-22.
Lemons, S.; Ruml, W.; Holte, R.; and Linares Lopez, C.
2024. Rectangle Search: An Anytime Beam Search. In Pro-
ceedings of AAAI-24.
Likhachev, M.; Gordon, G. J.; and Thrun, S. 2003. ARA*:
Anytime A* with Provable Bounds on Sub-Optimality. In
Proceedings of NIPS-03.
Newell, A. 1978. Harpy, Production Systems and Human
Cognition. In Proceedings of Symposium on Cognition ’78.
Sturtevant, N. 2012. Benchmarks for Grid-Based Pathfind-
ing. Transactions on Computational Intelligence and AI in
Games, 4(2): 144 – 148.

10 4 10 3 10 2 10 1

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

qu
al

ity

10 4 10 3 10 2 10 1

Time (seconds)

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 4 10 3 10 2 10 1 100 101

Time (seconds)

100

200

300

400

500

600

700

800

900

So
lu

tio
n

co
st

15 puzzle (unit)
rectangle-1
rectangle-500
outstanding-2

Figure 16: Anytime performance in tiles (unit) domain with relative discrepancy scores.

(a) Tie-breaking by shallower depth

(b) Tie-breaking by deeper depth

Figure 17: Visualizations of how outstanding-2 searches on a pancake instance with different kinds of tie-breaking across
depths.

10 3 10 2 10 1

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

qu
al

ity

10 3 10 2 10 1

Time (seconds)

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 2 10 1 100 101

Time (seconds)

70

75

80

85

90

95

100

So
lu

tio
n

co
st pancake (unit)

rectangle-1
rectangle-500
outstanding-2
outstandingrect-1
outstandingrect-500

Figure 18: Anytime performance in pancake (unit) domain with tie-breaking by deeper depth.

10 5 10 4 10 3 10 2 10 1

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

qu
al

ity

10 5 10 4 10 3 10 2 10 1

Time (seconds)

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 4 10 3 10 2 10 1

Time (seconds)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

So
lu

tio
n

co
st

64room (unit)
rectangle-1
rectangle-500
outstanding-2
outstandingrect-1
outstandingrect-500

Figure 19: Anytime performance in 64room (unit) domain with tie-breaking by deeper depth.

10 4 10 3 10 2

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

qu
al

ity

10 4 10 3 10 2

Time (seconds)

0

20

40

60

80

100
Nu

m
be

r o
f i

ns
ta

nc
es

 so
lv

ed

10 4 10 3 10 2

Time (seconds)

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

So
lu

tio
n

co
st

orz100d (unit)
rectangle-1
rectangle-500
outstanding-2
outstandingrect-1
outstandingrect-500

Figure 20: Anytime performance in orz100d (unit) domain with tie-breaking by deeper depth.

10 4 10 3 10 2 10 1

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

qu
al

ity

10 4 10 3 10 2 10 1

Time (seconds)

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 3 10 2 10 1 100 101

Time (seconds)

0

200

400

600

800

1000

1200
So

lu
tio

n
co

st 15 puzzle (unit)
rectangle-1
rectangle-500
outstanding-2
outstandingrect-1
outstandingrect-500

Figure 21: Anytime performance in tiles (unit) domain with tie-breaking by deeper depth.

10 5 10 4 10 3 10 2 10 1 100

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

Av
er

ag
e

qu
al

ity

10 5 10 4 10 3 10 2 10 1 100

Time (seconds)

0

20

40

60

80

100

Nu
m

be
r o

f i
ns

ta
nc

es
 so

lv
ed

10 2 10 1 100 101

Time (seconds)

0

250

500

750

1000

1250

1500

1750

2000

So
lu

tio
n

co
st

vacuum 200x200 10 (unit)
rectangle-1
rectangle-500
outstanding-2
outstandingrect-1
outstandingrect-500

Figure 22: Anytime performance in vacuum (unit) domain with tie-breaking by deeper depth.

