
Online Open-World Adversarial Planning

Bryan McKenney and Wheeler Ruml
Department of Computer Science

University of New Hampshire
Durham, NH 03824 USA

Bryan.McKenney@unh.edu, ruml@cs.unh.edu

Abstract

Hindsight optimization is a simple but powerful online
planning algorithm that has applications in games (Paredes
and Ruml 2017), robot search-and-rescue, making omelettes
(Kiesel et al. 2013), manufacturing, unmanned aerial vehi-
cle flight patterns (Burns et al. 2012), and more. We show
that it also finds good suboptimal solutions in an open-world
domain with an unknown number of invisible adversaries,
and thus provides a straightforward alternative to Molineaux,
Klenk, and Aha’s complex goal-driven autonomy algorithm.

Introduction
When an agent in some world must decide upon a sequence
of actions to perform to achieve some goal, that is known as
planning. In many areas of planning, it is assumed that ev-
erything about the world is known and visible to the agent,
but real-world situations seldom have these characteristics.
A more realistic problem is one that is partially observable
and open world — in other words, the agent cannot see ev-
erything in the world and it does not even know exactly what
is out there. In problems like this, it is prohibitively time-
consuming to compute an optimal strategy for every possible
situation, as offline planners do — a suboptimal online agent
that observes the world after each action and uses its current
information to plan its next action is necessary. When ad-
versaries that actively work against the interests of the agent
are introduced to the world, the problem becomes known as
a strategic game. The focus of this research is suboptimal
online planning for single-agent open-world strategic games
with discrete state and action spaces, infinite horizon, and no
time pressure.

Molineaux, Klenk, and Aha introduce a complex method
for solving online open-world problems called goal-driven
autonomy (GDA) in which the agent manages a set of goals
whilst trying to achieve them; goal reasoning is made ex-
plicit and separated from planning. They test their GDA al-
gorithm, ARTUE, on three Navy-themed domains, two of
which involve a Navy ship agent and a hidden submarine
adversary, and they claim that GDA is necessary to solve
such situations.

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In this paper, we use a similar domain with a Navy ship
agent and an unknown number of hidden submarine adver-
saries that are trying to destroy cargo ships to show that
GDA is not necessary — a much simpler approach called
hindsight optimization, in which the agent samples possible
worlds and plans in all of them, works just as well. A Navy
ship agent using hindsight optimization will employ an intel-
ligent patrolling strategy to protect the cargo ships without
needing to explicitly reason about its goals.

Previous Work
In this section, we summarize papers that preceded this work
and how they are relevant to our research. We first discuss
two papers about solving games, then one paper about goal-
driven autonomy, and finally three papers that utilize hind-
sight optimization.

Games
The following two papers describe methods of solving par-
tially observable games. One of the goals of this research is
to show that hindsight optimization works on open-world
adversarial games, but at the current stage the domain is
simplified and does not actually represent a game. This is
because the adversaries do not reason about the agent’s ac-
tions and try to plan around them, so they are more akin to
dynamic environmental hazards than hostile agents.

Hansen, Bernstein, and Zilberstein, “Dynamic Program-
ming for Partially Observable Stochastic Games,” AAAI
2004. In this paper, Hansen, Bernstein, and Zilberstein de-
scribe a method of solving POSGs (Partially Observable
Stochastic Games) that involves combining dynamic pro-
gramming for POMDPs (Partially Observable Markov De-
cision Processes) with iterated elimination of dominated
strategies for normal-form games. In POMDPs, beliefs are
about the underlying state, in normal-form games (which do
not have states or transition or reward functions), they are
about the strategies of other agents, and in POSGs, they are
about both. A POSG with a single agent is a POMDP, and a
POSG can be converted into a normal-form game with hid-
den state, which is what the algorithm does. It is an exact
algorithm, so it is guaranteed to find the optimal solution for
co-op games, but it only works on small problems. A strat-
egy is a complete conditional plan that can be represented by

a policy tree. All possible strategies are constructed for each
agent, pruning very weakly dominated strategies, or strate-
gies that have less or equal value to all other strategies, along
the way, and then the algorithm alternates between agents,
eliminating strategies that are not optimal against the others,
until all agents have been narrowed down to a single strat-
egy.

This paper was useful for its introduction to POSGs, even
though our work does not currently involve POSGs, due to
our deterministic domain and non-agent adversaries. With
one agent, states, and a transition function, our domain is a
POMDP. Hansen, Bernstein, and Zilberstein’s algorithm is
also offline and optimal, while our approach is the complete
opposite. The one similarity is partial observability.

Zinkevich et al., “Regret Minimization in Games with In-
complete Information,” NIPS 2007. In this paper, Zinke-
vich et al. introduce an algorithm for finding approximate
solutions to extensive games with imperfect information
with up to 1012 game states. An extensive game with im-
perfect information can be modelled as a game tree and in-
formation sets for each player about the part of the state that
they cannot observe. Chance is considered a player. The al-
gorithm involves finding the ϵ-Nash equilibrium (where each
player chooses roughly the best strategy for themselves) by
minimizing counterfactual regret, a novel application of re-
gret minimization that is akin to Bellman backups. Regret is
essentially the utility missed out on by not playing a certain
strategy. Zinkevich et al. test their algorithm on two-player
limited Texas Hold’em poker and beat champion algorithms.

This paper was useful for its introduction to extensive
games with imperfect information, which our research might
eventually use, as our domain is partially observable and is
planned to become a game. The counterfactual regret algo-
rithm is approximate due to the large number of states, and
we are using an approximate algorithm for the same reason.

Goal-Driven Autonomy
The following paper is the origin of goal-driven autonomy.

Molineaux, Klenk, and Aha, “Goal-Driven Autonomy
in a Navy Strategy Simulation,” AAAI 2010. In this
paper, Molineaux, Klenk, and Aha state that agents in
partially-observable, open-world, adversarial, stochastic do-
mains with continuous time and space (such as video games
and simulations) need a way to deal with unexpected events
that ruin plans. They introduce the goal-driven autonomy
(GDA) algorithm framework, which separates goal reason-
ing from planning. GDA has five components: 1) The Hi-
erarchical Task Network Planner, which predicts the future
to anticipate exogenous events; 2) The Discrepancy De-
tector, which compares the observed state to the expected
state to find discrepancies; 3) The Explanation Generator,
which hypothesizes causes for the discrepancies based on
what it knows about the environment; 4) The Goal For-
mulator, which uses domain-dependent principles to map
explanations of discrepancies to new goals; and 5) The
Goal Manager, which prioritizes goals based on their hard-
coded intensity levels. Molineaux, Klenk, and Aha claim

that only GDA simultaneously relaxes all four classical plan-
ning assumptions — deterministic environments, static en-
vironments, discrete effects, and static goals. They intro-
duce a possible implementation of GDA called ARTUE (Au-
tonomous Response to Unexpected Events) and test it with
success on three scenarios in the Tactical Action Officer
(TAO) Sandbox, a naval simulation in which the agent is a
Navy ship. These three scenarios are: 1) Scouting, in which
the initial goal is to identify nearby ships until an unexpected
submarine attack adds the goal of identifying and destroying
the sub; 2) Iceberg, in which the initial goal is to transport
cargo between points until lightning strikes an iceberg and
a severe storm arises, adding the additional goals of seeking
shelter and rescuing members of a sinking ship; and 3) Sub-
Hunt, in which the goal is to seek and destroy a submarine
while also sweeping mines that it lays.

This paper was useful for introducing GDA, as we are
trying to show that GDA is not necessary by using a similar
Navy-themed domain. A detailed comparison between the
TAO Sandbox scenarios and our domain is given in the Eval-
uation section. As described by Paredes and Ruml, hindsight
optimization fulfills the five components of GDA without
having them be explicit parts of the algorithm and without
the need for hard-coded goals.

Hindsight Optimization
The following three papers show that hindsight optimization
can be used to solve various problems.

Burns et al., “Anticipatory On-line Planning,” ICAPS
2012. In this paper, Burns et al. define on-line continual
planning problems (OCPPs) as problems where new goals
can arrive while the agent is working towards other ones,
which may require a change in plans. They argue that reac-
tive planning, which can change its strategy only after some-
thing unexpected happens, does not do well on OCPPs be-
cause it ignores information about possible future goals and
thus is not prepared for their arrival. Burns et al. introduce
anticipatory on-line planning, which is hindsight optimiza-
tion applied in the context of online planning. In contrast
to reactive planning, anticipatory on-line planning/hindsight
optimization samples possible futures and solves each future
using a deterministic planner to determine the best course of
action, which is slower than reactive planning but more ef-
fective. In order to use hindsight optimization with an OCPP,
the OCPP must formulated as a Markov Decision Process
(MDP) where each state is comprised of a world state and a
set of goals, and possible futures should be solved to mini-
mize cost up to a certain horizon (the larger the horizon, the
better the results). Burns et al. test this algorithm with suc-
cess in a domain where unmanned aerial vehicles (UAVs)
keep getting requests to fly over different strips of land and
in a domain where orders to manufacture widgets can come
in and machine parts can break every time step.

This paper was useful for introducing hindsight optimiza-
tion and proving its proficiency in online settings. Like
Burns et al., we use a domain that is an OCPP formulated
as an MDP, although the only “goal” is minimizing cost.
Our domain is grid-based, just like the UAV domain, but

ours has 4-way connectivity while the UAV grid has 8-way
connectivity. We compare reactive planning to hindsight op-
timization, but our hindsight optimization maintains a belief
state, which is beneficial in our partially-observable domain
but would not be in the two domains tested in this paper (be-
cause they are fully observable).

Kiesel et al., “Open World Planning for Robots via Hind-
sight Optimization,” ICAPS 2013. In this paper, Kiesel
et al. argue that hindsight optimization is necessary for
robotics, because the assumption that the world is closed, or
that everything that is in it is known, is unrealistic. They give
the example of a rescue robot searching a partially-destroyed
building for survivors — the layout of the building is un-
known, but the algorithm must work quickly, so it must gen-
erate possible world states (floor plans and victim locations)
and plan in those. Kiesel et al. introduce OH-wOW, or Op-
timization in Hindsight with Open Worlds, which is hind-
sight optimization applied in the context of open worlds.
It is assumed that the agent possesses probabilistic knowl-
edge about the domain, even if it is not accurate, and the
agent maintains a belief state that tracks current knowledge
of the world so that sampled possible worlds make sense.
The agent must plan to take sensing actions before inter-
acting with hypothesized objects to make sure that they are
actually there when executing a plan (if not, the plan will
have to change). Kiesel et al. test this algorithm with success
in a domain where a good omelette has to be made out of
eggs that have different probabilities of being bad, a domain
where packages that could be bombs have to be diffused in
toilets, and the aforementioned robot search-and-rescue do-
main, which they even tested with a physical robot.

This paper was useful for proving hindsight optimiza-
tion’s proficiency in complex open-world settings. Like
Kiesel et al., we use hindsight optimization with a belief
state in an open-world domain. Our agent has accurate prob-
abilistic knowledge of the domain in that it knows that the
number of adversaries is in a certain range and that each pos-
sibility has equal probability. However, it does not perform
sensing actions because sensing of nearby submarines is au-
tomatic.

Paredes and Ruml, “Goal Reasoning as Multilevel Plan-
ning,” ICAPS 2017. In this paper, Paredes and Ruml ar-
gue against Molineaux, Klenk, and Aha’s claim that goal
reasoning needs to be separate from planning for com-
plex domains. They create a partially-observable, open-
world, online, multi-unit, adversarial domain called Har-
vester World (which is based on a game called Battle for
Survival, which is similar to StarCraft) to aid their argument.
In this grid-based domain, the agent controls a Harvester and
a Defender, there is an Enemy that can be seen from one unit
away from them but is otherwise invisible, and there are also
hidden obstacles and food around the map. The agent knows
the Enemy’s policy. Paredes and Ruml introduce GROH-
wOW, which is OH-wOW but it includes the horizon of the
deterministic planner in the pseudo-code. They test this al-
gorithm with success in three different Harvester World sce-
narios and show that it implicitly has all of the components
of goal-driven autonomy. Hindsight optimization is a type

Algorithm 1: Hindsight Optimization(o, N , H)

1: sampleStates← hallucinate(N)
2: for all actions a applicable in o do
3: sampleCosts← []
4: for all states s in sampleStates do
5: s′, aCost← f(s, a)
6: c← aCost+ planCost(s′, H)
7: append c to sampleCosts
8: end for
9: Q(o, a)← mean(sampleCosts)

10: end for
11: return argminaQ(o, a)

of multilevel planner, as the high-level deterministic planner
acts as a heuristic function for the low-level hindsight algo-
rithm, and this can be viewed as reasoning about goals and
choosing the best one to pursue. Paredes and Ruml also use
macro actions that are like easily-achievable goals to speed
up the algorithm.

This paper was useful for proving hindsight optimiza-
tion’s proficiency in domains with invisible adversaries.
Like Paredes and Ruml, we use a domain that is grid-
based, partially-observable, open-world, online, and adver-
sarial. The adversaries can also only be seen if they are one
space away from the agent and the agent knows how they
operate. In our world, however, there are an unknown num-
ber of adversaries instead of just one, and only one unit con-
trolled by the agent instead of two.

Approach
In this section, we will first formally define the problem,
then describe the solution — hindsight optimization.

Formal Problem Definition
An online partially-observable deterministic plan-
ning problem can be formally defined as a 7-tuple
⟨s0, o0,S,A,O, f, g⟩. s0 ∈ S is the initial state (unknown
to the agent), o0 ∈ O is the initial observation (what the
agent knows about the initial state), S is the state space, A
is the action space, and O is the observation space. After
the agent takes an action in a state, the transition function
f : S × A → S × R returns the next state and the cost of
the action, but the concealer function g : S → O takes that
state and converts it into an observation that is then given
to the agent. The algorithm must choose an action to take
on each of its turns with the goal of minimizing long-term
cost. The agent has full knowledge of o0, S, A, O, f , and g
— only s0 is unknown. For a strategic game with invisible
deterministic adversaries, the adversaries are represented in
states, but not in observations, and f defines their behavior.

Hindsight Optimization
Algorithm 1 outlines hindsight optimization. This algo-

rithm works by sampling states from the agent’s belief state
(line 1), which is the set of all possible current states based
on the history of observations. (In this case, the belief state

Algorithm 2: planCost(s, H , t← 0)

1: if t = H then
2: return 0
3: end if
4: for all actions a applicable in s do
5: s′, aCost← f(s, a)
6: costToGo← planCost(s′, H, t+ 1)
7: Q(s, a)← aCost+ costToGo
8: end for
9: return minaQ(s, a)

tracks the possible number and positions of invisible adver-
saries.) For each possible action, a deterministic planner is
run in each of these sampled possible states up to a cer-
tain horizon (line 6). The action that led to the lowest av-
erage cost across the possible states is chosen (line 11). This
pseudo-code is slightly different from the way it is tradition-
ally written because the hallucinate function (line 1) sam-
ples up to N possible states from the agent’s belief state,
so if the possibilities have been narrowed down to less than
N , the same state will not be sampled more than once. This
improves efficiency.

Algorithm 2 outlines a basic deterministic planner. Our
planner followed this blueprint but used the branch-and-
bound and memoization techniques to improve efficiency.
Child ordering using a heuristic function would also be a
good addition to make the planner even faster.

Evaluation
In this section, we will first describe our Navy Defense
domain, then the benchmark algorithms that we compared
hindsight optimization to, then how results were normalized,
and finally the four experiments that we conducted.

The Navy Defense Domain
In this domain, a Navy ship must defend cargo ships from
being destroyed by hidden submarines in a grid-world of
variable size (for a visual, see Figure 1). There is one Navy
ship (the agent) and a variable number of cargo ships (allies)
and submarines (adversaries) in different starting positions.
The Navy ship, cargo ships, and submarines each take up a
single space on the grid and have 2 health. When a ship or
sub is reduced to 0 health, it is destroyed (removed from the
world). Multiple ships and subs can occupy the same space.
The agent can only observe submarines that are within a 1-
space sonar radius (including diagonals) of it, and it does
not know how many submarines are in the world, but it does
know the maximum number that could be. The agent has
unlimited time to contemplate its next move while the world
stands still. After the agent takes an action, cargo ships and
then submarines (in the order that they were created in) make
their moves. All submarines decide what they will do before
any of them acts. The ships and subs work in the follow-
ing ways (a ship/sub’s On Hit ability triggers when it takes
damage but still has more than 0 health afterwards, and its
On Destroy ability triggers when it is destroyed):

• Navy Ship (Agent)

– Available Actions:

* Move (in a valid orthogonal direction): Move 1 space
in the chosen direction, then deal 1 damage to all sub-
marines within sonar radius. (The agent does not have
the option of moving in a certain direction if there is
an edge of the grid there.)

– On Hit: Incur cost of 10.
– On Destroy: Incur cost of 40.

• Cargo Ship (Ally)

– AI: Travel in a rectangle with size based on initial lo-
cation (e.g. if it was originally in the top left corner of
the grid it will sail around the border of the grid) in
a predetermined direction (clockwise or counterclock-
wise).

– On Hit: Incur cost of 20.
– On Destroy: Incur cost of 80.

• Submarine (Adversary)

– AI: Move orthogonally (avoiding the Navy ship’s
sonar radius) to the nearest point of intersection along
a cargo ship’s route. Can also stay still to lie in wait.
After moving or staying still, deal 1 damage to all ships
on its space. If inside the Navy ship’s sonar radius,
will move out of it, if possible, or move onto the Navy
ship’s space otherwise.

Updating the Belief State An agent using hindsight op-
timization on this domain can keep track of its belief state
simply by keeping a list of known submarine locations and
updating them via simulation each turn, then comparing
these known locations to the observation, which includes
ships and subs that were attacked. When a submarine at-
tacks or is attacked, its precise location is learned, and it can
be tracked because it acts deterministically.

Navy Defense vs. TAO Sandbox The Navy Defense do-
main is similar to the TAO Sandbox Scouting scenario that
Molineaux, Klenk, and Aha tested ARTUE in because there
is a hidden submarine that attacks ships and the agent — a
Navy ship — can see it only by using sensors and is able
to destroy it. In Scouting, however, the agent gets rewarded
for destroying the submarine, which is not the case in Navy
Defense, and in Navy Defense there can be more than one
submarine.

Navy Defense can be compared to the SubHunt scenario
as well, but only in that the Navy ship can discover where
the submarine is — in SubHunt the goal is to find and de-
stroy the submarine, while in Navy Defense destroying subs
is not necessary as long as the cargo ships are protected (and,
again, there can be more than one sub).

Navy Defense is a grid-based domain, while TAO Sand-
box is not.

Test Instances Three different types of Navy Defense
worlds were randomly generated for the following experi-
ments. These worlds are classified by size and have different
characteristics:

Figure 1: A 5x5 world in the Navy Defense domain with one agent/Navy ship (N), two cargo ships (C) to protect, and two
invisible submarines that are trying to destroy them (S). The observation (what the agent sees) is on the left and the true state is
on the right. The arrows show the fixed paths that the cargo ships move along, and the numbers indicate turn order.

• Small – Has 5-7 rows and columns, 1-2 cargo ships, and
1-3 subs.

• Medium – Has 8-10 rows and columns, 2-3 cargo ships,
and 1-4 subs.

• Large – Has 11-13 rows and columns, 2-4 cargo ships,
and 1-5 subs.

Benchmark Algorithms
The basic algorithms that were compared to hindsight opti-
mization (abbr. Hindsight) in the Navy Defense domain are:

• Random – Chooses an action to take at random.

• Patrol – Moves in a rectangle with size based on initial
location (just like the cargo ships). There are two versions
of this algorithm, CW and CCW, which determine which
direction the agent will move in (clockwise or counter-
clockwise).

• Reactive – Like Patrol, except after a nearby cargo ship
is attacked, moves to protect it and then updates its rect-
angular course based on its new location and its direction
based on that cargo ship’s direction.

• Paranoid – Like Hindsight but never updates its belief
state (so it never learns where subs actually are).

• Omniscient – Uses the same planner as Hindsight (and
so has a lookahead horizon) but knows the true state of
the world (can see all subs) and uses that instead of hal-
lucinating possible worlds.

To see these algorithms (and Hindsight) in action in the
world from Figure 1, go to https://imgur.com/a/rtK5vVV.

Normalizing Results
The results from the following experiments mostly focus on
the average normalized cost achieved by the algorithms. The
normalized cost is calculated by dividing the cost accrued
by the agent in a world by the maximum cost that could
theoretically be attained in that world (for instance, a world
with two cargo ships has a maximum cost of 250, which
could be achieved if both of the cargo ships and the Navy
ship were destroyed).

Experiment 1: Finding Suitable Benchmark
Instances
In this experiment, each algorithm was run for 30 time steps
on 20 random worlds of each size. For the algorithms that
sample possible worlds (Paranoid and Hindsight), sample
sizes of 5, 10, and 15 were tested, and for the algorithms
that have lookahead horizons (Paranoid, Hindsight, and Om-
niscient), horizons of 1, 3, and 5 were tested. 2 trials were
done per combination for stochastic algorithms and 1 trial
was done per combination for deterministic algorithms. The
same seeds were used for each set of trials. The results of
these algorithms were averaged across their different com-
binations, as were the results of the CW and CCW variants
for Patrol and Reactive.

Figure 2 shows that, for Small and Medium worlds, Ran-
dom performed the worst, then Patrol, then Reactive, then
Paranoid, then Hindsight, and Omniscient performed the
best. These results are as expected — the more the agent
reasons or knows about the state of the world, the better
it is able to protect the cargo ships. In Large worlds, how-
ever, Random and Patrol slightly outperformed Reactive,
and Hindsight slightly outperformed Omniscient. This was

Figure 2: The average normalized cost achieved by each algorithm in the three world sizes. The black lines are 95% confidence
intervals.

Figure 3: The average runtime of each algorithm in the three world sizes. The black lines are 95% confidence intervals.

probably just due to luck and the small number of worlds and
trials. Since the difference between the algorithms’ achieved
average normalized costs in Large worlds was fairly small
and the largest differences were seen in Small worlds, it was
judged that Large worlds were too difficult for any algorithm
(the agent could start too far away from the cargo ships to
be able to reach them before the subs) and that only Small
worlds would be used for further experimentation.

Figure 3 shows that, as expected, Random, Patrol, and Re-
active take barely any time to run and this time does not
increase with world size. Paranoid takes the most time to
run (but still under 3 seconds in Large worlds), Hindsight
the second-most, and Omniscient the third-most, and these
algorithms do take longer to run the larger the world is be-
cause there are more valid directions to test travelling in.
Hindsight is faster than Paranoid because, in some cases, it
can narrow down the world to one possibility and then not
have to hallucinate possible worlds and plan in them any-
more (and since Omniscient starts with one possibility that
is why it is dramatically faster than both).

Experiment 2: Tuning Hindsight Optimization
In this experiment, Hindsight was run for 30 time steps on
100 random Small worlds. Sample sizes and horizons of 1,
2, 3, 5, 10, 15, 20, and 25 were tested. 2 trials were done for
each combination. The same seeds were used for each set of
trials.

Figure 4 shows that, no matter what the sample size is, in-
creasing the horizon from 1 to 2 significantly reduces cost,
but after that increasing it more does not have a significant
effect (except for a sample size of 5). The plot also shows
that, no matter what the horizon is, increasing the sample
size up to 10 reduces cost, but beyond 10 does not make
much difference. The latter result was expected, because the
more possible worlds that are considered should increase the
probability that the agent makes a good decision in the true
world (but considering too many worlds is unnecessary be-
cause they are small and likely to have similar good actions).
The former result was unexpected but makes sense — the
Small worlds are just too small for the horizon to matter
very much, because the agent quickly learns the true state
once all of the submarines attack or are attacked, and once
it is known the best action is usually obvious without look-
ing too far ahead (but looking 1 step ahead is generally not
enough). Thus, it was decided that for further experimenta-
tion, the algorithms that use a horizon would have it set to
5 and the algorithms that use a sample size would have it
set to 20 (horizon 2 and sample size 10 could probably have
been used, but using higher numbers just ensures that the
algorithms perform as well as they can on these worlds).

Experiment 3: Determining Necessity of Multiple
Trials
In this experiment, the three stochastic algorithms — Ran-
dom, Paranoid, and Hindsight — were run for 30 time steps
on 5 random Small worlds. Paranoid and Hindsight used
sample sizes of 20 and horizons of 5. 1,000 trials were done
for each combination. The same seeds were used for each
set of trials.

Figure 5 shows that Paranoid and Hindsight achieved sim-
ilar cost distributions in each of the worlds, but Paranoid
has greater variance than Hindsight in all worlds but small-
World101, where they are equal. Random has very high vari-
ance in smallWorld0 and smallWorld10 and Paranoid and
Hindsight have the highest variance in smallWorld10 and
smallWorld100, which shows that these algorithms cannot
perform consistently in some worlds. Thus, it was decided
that when doing further experimentation with randomly gen-
erated worlds, multiple trials of each stochastic algorithm
would be run on each world to provide more accurate re-
sults.

Experiment 4: Comparing Algorithms
In this experiment, each algorithm was run for 30 time steps
on 1,000 random Small worlds. Paranoid and Hindsight used
sample sizes of 20 and horizons of 5 and Omniscient used a
horizon of 5. 5 trials were done per combination for stochas-
tic algorithms and 1 trial was done per combination for de-
terministic algorithms. The same seeds were used for each
set of trials.

Figure 6 and Figure 7 reinforce the results found in Exper-
iment 1 — Hindsight beats all of the benchmark algorithms
except Omniscient, as is expected. The two versions of Pa-
trol performed about the same, and so did the two versions
of Reactive. This is not surprising, as the only difference be-
tween each version is starting direction, and the worlds are
random, so neither starting direction should be better than
the other on average. Sampling possible worlds and plan-
ning in them, even without updating belief state, is much
more effective than the Random, Patrol, and Reactive strate-
gies, as evidenced by the large drop in cost from Reactive
to Paranoid. Hindsight exhibited patrolling behavior, which
can be viewed here: https://imgur.com/a/KjFuBbU.

Discussion
We have shown that hindsight optimization works well on a
small grid-based domain that shares some similarities with
the TAO Sandbox domains used by Molineaux, Klenk, and
Aha. However, the Navy Defense domain is rather simple,
as it is deterministic and submarines can only attack ships
on their grid space, so once a sub attacks or is attacked the
agent knows exactly where it is and can accurately track
it for the rest of the simulation. Adding some stochasticity
(such as random tie-breaking when subs have two equally
good paths to a cargo ship) and allowing subs to attack a
nearby space will increase the number of possibilities for
where subs can be and force the agent’s belief state to be
more advanced. The sub will also be made to reason about
what the agent will do and plan around it, which will make
the domain much harder (and a true game). To make the do-
main closer to the TAO Sandbox domains, features from the
third Navy scenario Molineaux, Klenk, and Aha tested GDA
on — Iceberg, which involves seeking shelter from a storm
and rescuing people from a sinking ship — will be intro-
duced. If hindsight optimization can still perform well in a
Navy Defense domain that is made more difficult and com-
plex in these ways, it will be even greater evidence that goal-
driven autonomy is not the only solution to such problems.

Figure 4: A heatmap showing how the average normalized cost is affected by running hindsight optimization with eight different
sample sizes and horizons.

Another avenue for future research is to see if hindsight
optimization (or some mutation of it) can succeed against
problems that only neural networks are considered suitable
for, such as playing very complex games. One such game
is Duelyst, an online collectible card game that features a
9x5 grid board on which each player’s General and minions
do battle. Duelyst is partially observable and open world be-
cause you do not know the cards in your opponent’s deck
or in their hand. The game’s stochasticity is not limited to
drawing random cards from your deck, as some of the cards
also have random effects when played, and the action space
can be very large, depending on the number of cards in your
hand and the number of minions you have on the board. In
addition, several actions must be taken within a 90-second
turn, which means that many observations must be quickly
reacted to each turn. Speeding up hindsight optimization
with child ordering and multithreading may be necessary to
even give it a chance at finding decent solutions to such a
complex domain.

Conclusion
In this paper, we described hindsight optimization and in-
troduced the open-world adversarial Navy Defense domain,
which mimics some features of the TAO Sandbox. We then
showed that hindsight optimization can be used to find
good online suboptimal solutions in Navy Defense scenar-
ios, making it a contender against goal-driven autonomy.
Further research will show if it is truly superior, but it al-
ready displays emergent patrolling behavior only from at-
tempting to minimize cost, while most of the reactive be-
havior in GDA is hard-coded.

Acknowledgments
Thanks to the Hamel Center for Undergraduate Research
and the donors who provided me with the funding for this
research and to Professor Ruml for being a great mentor!

References
Burns, E.; Benton, J.; Ruml, W.; Yoon, S.; and Do, M. 2012.
Anticipatory On-line Planning. In Proceedings of ICAPS-
12.
Hansen, E. A.; Bernstein, D. S.; and Zilberstein, S. 2004.
Dynamic Programming for Partially Observable Stochastic
Games. In Proceedings of AAAI-04.
Kiesel, S.; Burns, E.; Ruml, W.; Benton, J.; and Kreimen-
dahl, F. 2013. Open World Planning for Robots via Hind-
sight Optimization. In Proceedings of ICAPS-13.
Molineaux, M.; Klenk, M.; and Aha, D. 2010. Goal-Driven
Autonomy in a Navy Strategy Simulation. In Proceedings
of AAAI-10.
Paredes, A.; and Ruml, W. 2017. Goal Reasoning as Multi-
level Planning. In Proceedings of ICAPS-17.
Zinkevich, M.; Johanson, M.; Bowling, M.; and Piccione,
C. 2007. Regret Minimization in Games with Incomplete
Information. In Proceedings of NIPS-07.

Figure 5: Distributions of the cost achieved by Random, Paranoid, and Hindsight in five worlds. The sample standard deviation
for each combination is in parentheses.

Figure 6: Distributions of the cost achieved by each algorithm across 1,000 worlds. The white lines show the average cost for
each algorithm (at the center) with 95% confidence intervals.

Figure 7: The average normalized cost achieved by each algorithm across 1,000 worlds. The black lines are 95% confidence
intervals.

