Multi-Ply Planning for Duelyst

CS 730: Intro to Al
Final Project Report

Bryan McKenney

Problem

Duelyst II (henceforth referred to simply as “Duelyst”) is a
two-player online collectible card game (CCG) that features
a 9x5 grid board where unit cards can move around and fight.
Each player’s goal is to keep their General alive and kill the
enemy General using the resources in their deck.

Normally, players in Duelyst play against each other,
which provides for exciting gameplay. However, there is also
a human vs Al mode which can only be used to train new
players because the Al, called the starter Al, is weak against
anyone who knows the game, leading to boring gameplay. It
is also designed to play only the starter decks and cannot do
much more than that. I want to create an Al that can consis-
tently beat the starter Al and that can use any deck in hopes
that it will allow more experienced players to have worthy
battles. Dream Sloth Games, the developers of Duelyst, have
allowed me to work in their codebase for my research, and
if I create something that works well enough, perhaps it will
get into the game. This opportunity is also exciting because
there is only one research paper relating to Duelyst — for
matchmaking, not game-playing Al (Cowan 2023) — and
few about CCGs in general, so it is a new domain to ex-
plore. Smart Al, assuming it was fast enough to play against
humans, could open up a host of options for Duelyst. For
instance, there is a “sandbox” mode where a player can test
two of their decks against each other, but they have to play
both decks themselves. I believe it would be more interest-
ing to fight a strong Al There used to be boss battles in the
game and there are plans for a roguelike mode (where the
player battles through Al encounters), both of which could
benefit from better AI. Currently, fighting the Al gives no
rewards because it is too easy, but a strong Al could even be
used in ranked games when few humans are online to speed
up matchmaking times.

Creating an Al for Duelyst is a challenge because there is
a large branching factor, several actions can be taken per turn
within a 90-second limit, actions can be stochastic, and the
opponent’s deck and hand are unknown — it is a complex
partially-observable stochastic game (POSG). As part of my
thesis work, I designed and implemented some algorithms
for Duelyst, including a modified version of Monte Carlo

Copyright © 2023, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tree search (MCTS). These algorithms do not model hidden
state and so can only look ahead until the end of the current
turn (or ply), which is very limiting. Although MCTS and
another of my algorithms perform well against the starter Al,
I still doubt that they would be a match for human players. In
this project, I extend my thesis work by exploring multi-ply
planners for Duelyst to see how they fare against the starter
Al and how they compare to my single-ply planners.

This project relates to the Al class because we discussed
planning in partially-observable domains and game-playing
algorithms such as minimax and Monte Carlo tree search,
but we did not get to implement any game Al.

Previous Work

This section describes some algorithms for solving games
and relevant applications of them.

Minimax

Minimax is the classic algorithm for solving fully-
observable zero-sum games. It constructs the entire game
tree, with one player playing optimally to maximize reward
and the other playing optimally to minimize it. The sub-
optimal version cuts off the search at a certain depth and
applies a static evaluator to estimate the value of the leaf-
node states. A variant of minimax called expectiminimax has
chance nodes, which take the mean of their children rather
than the min or max, and this allows it to play stochas-
tic games. However, minimax cannot deal with partially-
observable games.

PIMC

Perfect-information Monte Carlo (PIMC) search subopti-
mally solves POSGs by sampling possible worlds from a be-
lief state and doing minimax in each one to find the best ac-
tion on average across the sampled worlds (Furtak and Buro
2013).

This approach has been applied to standard-deck card
games such as Skat (Furtak and Buro 2013) and also makes
up an important part of Ginsberg (2011)’s GIB algorithm for
Bridge.

MCTS

Monte Carlo tree search (MCTS) is an algorithm that has
been used to great success in fully-observable stochastic



O End-Turn Best End-Turn game state

Get current
game board run MCTS to
determine best move
sequence
Phase 1:

determine n best
moVve sequences
using MCTS

5\0\
>

|
|
|
|
|
|
|
|
1=
|
r
|

.(
€
-

Path 1 Path 2 Pat

=
(7]

Phase 2:
determine best
Opponent move

on predicted !
hand-cards and :
game-states v

predict opponent’s
deck and hand cards

s

|
|
|
|
|
|
|
|
+
i
|
;
|

Phase: 3: forthe “/O\

bestin each of o
the n simulations, O/\_\]

simulate player
turn using MCTS

b

o
‘—*\'
U\:

]
'
'
'
w

 A—
<

play best
move sequence

backpropagate final

game board score on

all paths, return best
move sequence

e

Figure 1: The modified MCTS used for Hearthstone by
Dockhorn et al. (2018). Image from Dockhorn et al. (2018).

games (Gelly et al. 2012). It builds a search tree of alter-
nating state and action nodes, each of which contain a visi-
tation count N and an estimated value V (initially both set to
0). Repeated simulations are performed from the root of the
search tree and one node is added to the tree each time. A
rollout is done from each added node until a terminal state
and then the estimated value of the node is backpropagated
up the tree. This process is continued until time is up or a
certain number of simulations is run, and then the action
with the highest value or visitation count is taken. The UCT
policy selects which action to take during simulations, and it
incorporates the visitation count to add an exploration bonus
(weighted by the parameter C) to nodes that have not been
explored much.

Dockhorn et al. (2018) use a modified version of MCTS
(see Figure 1) to play Hearthstone, a popular CCG that is
very similar to Duelyst, except that it does not have the
grid board. They run MCTS for the agent, rolling out un-
til the end of the turn instead of the end of the game, then
select the n best end-of-turn nodes reached during rollouts
and run MCTS on those for the opponent, then repeat this
process to simulate the agent’s next turn from the n best
ending opponent states. In order to simulate the opponent,
they predict that the opponent’s deck is one of 20 preset op-
tions (whichever is closest to what they have played) and
choose a hand from that using a bigram model of card co-
occurrences. In this way, they are able to look ahead 3 plies
while planning, though only for a few simulations. The eval-
uations of the final states (3 plies ahead) are backpropagated
to the current-ply search tree. The algorithm returns the best
sequence of actions from the search tree (until the frontier)
instead of just the best next action to take.

POMCP

Partially observable Monte-Carlo planning (POMCP) is an
algorithm invented by Silver and Veness (2010) to apply
MCTS in partially-observable domains. The search tree al-
ternates between observation and action nodes. Observation
nodes contain unweighted particle belief states that are up-
dated during simulations. A simulation starts by sampling a
state from the root’s belief state so as to continue simulating
from a fully observable state.

Dobre and Lascarides (2018) use POMCP to play Settlers
of Catan, a complex 4-player POSG. They cluster actions
into types — such as road building, city building, and trad-
ing — and learn a preference distribution over those types
from game data. This distribution is used to influence which
actions get selected during tree search (the policy is PUCT
rather than UCT) and rollouts (an action type is sampled
first, then an action from that type).

Background

This section describes Duelyst, my MCTS-based algorithm
for playing it, the static evaluator I use, and the performance
of the algorithms I developed for my thesis.

Duelyst

In a Duelyst match, two players do battle with 39-card decks
on a 9x5 grid board. There is a maximum hand size of 6.



Each player controls a General and their goal is to kill the
opponent’s General (by reducing that General’s Health to
0). To do this, they can play minion, spell, and artifact cards
from their hand by spending mana. Minions are played on
the board and can move and attack enemy units (enemy units
are the opponent’s minions and General). Spells have an ef-
fect when played. Artifacts boost the power of a player’s
General until they are destroyed (they have three durability
and lose one every time the General is hurt).

Duelyst has a discrete but very large state space. There
are 6 factions, and each faction (except Vetruvian) has 34
cards — 3 artifacts, 14 minions, and 17 spells (Vetruvian
has 18 spells). There are 112 neutral cards, all minions. A
player’s deck can be made up of cards from one faction and
neutral cards and can contain up to 3 copies of the same
card, which means there are ((34+é32)X3) ~ 8.93 x 10°°
possible decks for a given faction. There are also 2 tiles,
which go under minions on spaces, and 26 token cards that
can only be created during matches (not added to decks). 45
units and tiles can be on the board at once, 6 cards in each
player’s hand, and potentially more than 39 cards in each
player’s deck (because some cards add cards to a player’s
deck). Units on the board can have Attack ranging from 0 to
99 and Health ranging from 1 to 99 (both integers) and can
also have an unlimited number of additional abilities granted
to them by cards or lose their abilities entirely. All of this
makes the state space enormous.

Duelyst has a discrete action space that can be relatively
small or very large depending on how many cards are in the
player’s hand and how many units are on the board. It is
not uncommon to have a branching factor of over 100 at
some points during the game. In addition, several actions
can be taken in a turn within a 90-second time limit and
some actions have stochastic outcomes.

One-ply MCTS for CCGs

My algorithm for Duelyst is called One-ply MCTS for
CCGs. It is MCTS but with three major changes:

1. Rollouts only go until the end of the turn instead of the
end of the game, because the opponent’s deck and hand
are unknown. Rollouts either take random actions or do
hill-climbing, greedily choosing the action that leads to
the highest-valued state (according to the static evalua-
tor).

2. Inspired by Dobre and Lascarides (2018)’s use of action
types to guide search, action types are an explicit part of
the MCTS search tree — the possible actions at a par-
ticular state are grouped into an action tree. Duelyst’s
action space can be neatly factored into seven action
types: Mulligan, MoveUnit, AttackWithUnit, PlayCard,
ReplaceCard, EndTurn, and Followup (a Followup action
can occur after a PlayCard action or another Followup ac-
tion). For the MoveUnit, AttackWithUnit, and PlayCard
action types, they can be further factored (in the next
layer of the action tree) into action sources, or the unit or
card that you are going to perform that action with (e.g.
MoveUnit could branch into UnitA and UnitB). Under-
neath action types or action sources are ground actions,

which are fully described actions that can be executed in
the state (e.g. where to move UnitB). The EndTurn ac-
tion type is unique in also being a ground action. Each
action type and action source node has a visitation count
and stored value, just like the other nodes in the search
tree, and choosing an action consists of first choosing an
action type and then potentially an action source.

3. There is some code specific to dealing with unique situ-
ations that arise from the Mulligan and EndTurn action

types.

There are parameters for the rollout policy to use (ran-
dom or greedy), the time to spend searching for each action,
and whether or not to use action trees, as well as the default
MCTS exploration parameter C. I use a C value of 10 for all
experiments.

Static Evaluator

The static evaluator I created estimates the value of a state
using a set of simple rules. A win state has a value of 10,000
multiplied by the remaining health of the winner (in order
to differentiate end-game states), a lose state is the same but
with a negative value, and any other state’s value is the dif-
ference in values of both players’ units. A unit’s value is
based off of its cost, Attack, and Health, with a penalty for
being far from mana orbs (collectible resources that start on
the board at the beginning of the game) and a bonus for be-
ing near enemy units (especially the General) that it can kill.
A General’s Health is valued at three times that of a min-
ion to promote the ultimate objectives of staying alive and
killing the enemy General.

Thesis Algorithm Performance

Alongside One-Ply MCTS for CCGs (MCTYS), I tested an
agent that takes random actions (Random), an agent that
takes the best action based on a 1-step-lookahead using the
static evaluator (Hillclimb), and an agent that performs a sin-
gle rollout (until end of turn) from the state resulting after
each action and then chooses the action that leads to the
highest-scored state (Rollout). Figure 2 shows the winrate
of these algorithms against the starter Al after 1,000 games
each. The word in parenthesis after the name of an algorithm
refers to the rollout policy used. The Rollout planner using
greedy rollouts and the MCTS planner using either rollout
policy achieve over 60% winrate, with the simple Rollout
(Greedy) method actually performing the best, with a 68%
winrate. That is the number that I desired to beat in this
project.

Approach

In efforts to beat my previous results, I implemented a basic
belief state, variants of MCTS and Rollout that rollout mul-
tiple plies instead of just one, a new rollout policy, and two
new algorithms. I shall explain each of these in turn.

Belief State

Inferring the opponent’s deck and hand (the partially-
observable elements of Duelyst) is important to be able to



random

hillclimb

rollout
(random)

E
k=
5]
=]
= rollout
(greedy)

mcts
(random)

mcts
(greedy)

o

10 20 30 40 50 60 70
Winrate Against Starter (%)

Figure 2: The winrates of the algorithms I developed for my
thesis against the starter Al

simulate the opponent for multi-ply algorithms. That is, un-
less the Al cheats and sees the opponent’s actual deck and
hand. I mostly stuck with the latter method for this project
in order to determine if multi-ply search can even be theo-
retically helpful in Duelyst, but I also implemented a simple
deck-and-hand modeling approach. It takes the current ob-
servation of how many cards are in the opponent’s deck and
hand, generates a 39-card deck of random cards from the
opponent’s faction, draws from it to construct the hand, and
then removes cards from or adds cards to the deck at random
until it is the correct size.

This method can be used with an unweighted particle be-
lief state to sample potential decks and hands for the oppo-
nent.

Multi-Ply Rollouts

I wanted to see if a simpler multi-ply approach than Dock-
horn et al. (2018)’s multi-level MCTS could work, so I gave
the MCTS and Rollout algorithms the ability to explore mul-
tiple plies into the future with their rollouts. They can either
use the random deck modeling method described above or
see the opponent’s actual deck in order to simulate the op-
ponent’s turns. In the former case, a deck is sampled every
time the rollout enters the opponent’s turn and it is applied
to replace their actual deck during the rollout.

In the code and the plots, MCTS using multi-ply rollouts
is still called “mcts” but Rollout is called “rolloutMultiPly.”

Multi-Random Rollout Policy

In an effort to make a more robust version of random rollouts
that is faster than greedy rollouts to better rollout into the op-
ponent’s turn, I devised multi-random rollouts. This policy

performs n random rollouts from a state and then chooses
the highest-valued (from the current player’s perspective)
end-of-turn state discovered to either return the value of or
continue into the next ply from. A two-ply multi-random
rollout with n = 3 would perform six random rollouts: three
on the player’s turn and three on the opponent’s turn. This
approach takes inspiration from minimax, as it chooses the
best for each player and ignores lesser alternatives.

In the code and the plots, this rollout policy is called “mul-
tiRand.”

PIMC

I implemented PIMC search. It takes a number of sam-
ples, a horizon, and a deck modeling method as parameters.
When planning, it samples worlds using the deck modeling
method and performs a form of depth-limited minimax in
each. Since Duelyst turns generally consist of 5-6 actions
and because the branching factor can be so large, it would be
too expensive to even search through the player’s turn until
the first action of the opponent using minimax, so the mini-
max is “faked.” That is, it pretends that turns only consist of
one action and imagines the player and opponent going back
and forth like that. Even though this seems like a strange ap-
proach, I wanted to try it because it makes the player think
about the opponent’s actions right away instead of at some
far-off future point, and when playing Duelyst, I often think
about what the opponent could do to counter a specific ac-
tion that I am considering without playing out my entire turn
in my head first.

In the code and the plots, PIMC is inaccurately called
“minimax” because the way I use it in the experiment is
essentially as minimax (since I use the actual deck and 1
sample).

Three-Ply MCTS for CCGs

I converted my One-Ply MCTS for CCGs into Three-Ply
MCTS for CCGs by following Dockhorn et al. (2018)’s ap-
proach. One difference is that mine only returns a single
action instead of a sequence of actions, as I do not see
how a sequence can be returned when actions can have ran-
dom outcomes, unless it only goes until the first random ac-
tion. This algorithm runs three sets of MCTS (one search
for the agent’s current ply, n searches for the opponent’s
next ply, and n? searches for the agent’s next ply). In each
search, the n best end-of-turn states encountered in rollouts
and the frontier nodes those rollouts originated from are
tracked. These stored states and nodes allow for continuing
the search into the next ply after it is over even if there are no
end-of-turn states in the search tree, and for backpropagation
of values through each previous-ply tree.

Each MCTS is given equal time to build a tree (which is
a parameter). This is a very slow algorithm, but the point is
not to be fast (yet) but to be better at playing the game.

It makes sense to continue simulating into the next ply
from only the few best (according to the current player) end-
of-turn states because it is similar to the way minimax works
— ignoring worse options that likely will not be chosen and
focusing on the best for each player. Since the additional
search in some parts of the search tree goes to three plies,



3
™ 39 E
_SOE
o
E
£ o
El -0
] )
= =
£
=
-3
© 38 g
2
kS
20
1 2 3
Plies

Figure 3: A heatmap of Rollout’s average winrate against
the starter Al using different numbers of rollouts and plies
for the multi-random rollouts.

the returned values should be comparable to others in the
tree because they are all from the end of the player’s turn
(some are just more informed than others). If the extra search
only went one additional ply, those returned values would
likely look worse than everything else and potentially bar
the player from their best actions.

In the code and in the plots, Three-Ply MCTS for CCGs
is called “mctsMultiPly.”

Evaluation

I ran three experiments to judge the efficacy of my new al-
gorithms and approaches. The first was to test Rollout with
the multi-random policy with different numbers of samples
and plies. The second was to compare all of the algorithms.
The third was to find how impactful having an accurate deck
model was on the best-performing algorithm. I will now dis-
cuss these experiments in more detail.

Rollout + Multi-Random

I tested Rollout with multi-random rollouts (and actual deck
model) with all combinations of 3 and 6 rollouts and 1, 2,
and 3 plies to see the effect looking further ahead had on
winrate. Each combination played 100 games against the
starter Al and the average winrates are shown in Figure 3.
While the rollout policy appears very strong for single-ply
planning, especially with more rollouts, it gets significantly
weaker with each additional ply that the rollouts go out to.

Algorithm Comparison

I played each algorithm 100 times against the starter Al and
recorded the winrates in Figure 4 and the average selection
times in Figure 5. All of these algorithms use the actual deck
model and go to two plies except Three-Ply MCTS, which
naturally goes to three plies. Three-Ply MCTS planned from
the 2 best end-turn-states in each search tree, had 10 sec-
onds to build each tree, and used random rollouts. Both ver-

mcts
(greedy)

mcts
(random)

minimax

rolloutMultiPly
(greedy)

Algorithm

rolloutMultiPly
(random)

rolloutMultiPly
(multiRand)

mctsMultiPly
(random)

o

20 40 60 80
Winrate Against Starter (%)

Figure 4: The winrate of each algorithm against the starter
Al

sions of MCTS with multi-ply rollouts had 60 seconds to
choose an action. Rollout (MultiRand) was using 3 rollouts
and PIMC (“minimax”) had 1 sample and a horizon of 2.
The black bars are 95% confidence intervals on the mean.
All of the approaches do poorly except Three-Ply MCTS,
which has a ~62% winrate, and 2-Ply Rollout (Greedy),
which has a ~71% winrate. Both of these algorithms take
70 seconds on average to choose an action, which is far too
long for an actual game. Three-Ply MCTS, while maintain-
ing good winrate, did not improve over the single-ply ver-
sions shown in Figure 2. The same goes for the 2-Ply Roll-
out (Greedy) algorithm — while it did beat the 68% winrate
of the single-ply version, this data is only from 100 games
instead of 1,000, so it is likely that the winrates are about
the same. MCTS with 2-ply rollouts and 2-Ply Rollout (with
non-greedy rollouts) perform much worse than when only
rolling out to the end of the current ply.

PIMC (“minimax”), while not boasting an impressive
winrate, showed some interesting behavior that is worth
looking further into. As seen in Figure 6, it lasts significantly
longer than every other algorithm against the starter Al, even
though it loses 60% of the time. Also, a result I found in my
thesis that it appears that going second gives the player an
advantage does not apply to PIMC, even though it seems to
be true of every other algorithm in this experiment (aside
from Rollout with multi-random rollouts, which has essen-
tially equal winrate going first or second), as seen in Figure
7. When going first, PIMC has an average winrate of 50%,
and when going second, 30%. It is not surprising that PIMC
plays in a unique way given that it is a very different ap-
proach from all the other algorithms.



10 54550.1 592352 69499 8 701294

32961.2
g 1o 61575
@
£
=
=
S 10°
O
&
[
W
§ . 2
5 10
<<
©
o
o
Ly
Z 10
16
o
starter mcts mcts minimax  rolloutMultiPly rolloutMultiPly rolloutMultiPly mctsMultiPly
(greedy) (random) (greedy) (random) (multiRand) (random)
Algorithm
Figure 5: The average time (ms) each algorithm took to pick an action.
(greedy) m— 1
mets - s
mets (greedy) IINSSS—
(random)
mcts I
minimax
E rOIIOUtMLIltiPIY - -g
[s]
5  eew 2 rolloutmuttiely - |
_ (greedy)
rolloutMultiPly
(random) rolloutMultiPly | TE——
(random)  S——
rolloutMultiPly
(multiRand) rolloutMultiPly __
(multRand)  —
ey I metsmery I
(random) R ——
0 5 10 15
. 0 20 40 60 80
Number of Turns Against Starter Winrate (%)

Figure 6: The number of turns each algorithm lasted against

the starter Al Figure 7: The winrate of each algorithm playing first and

second player.



deck model
mmm random
s actual

rolloutMultiPly
(greedy)

Algorithm

0 20 40 60 80
Winrate Against Starter (%)

Figure 8: The winrate of 2-Ply Rollout (Greedy) against the
starter Al with both deck models.

Deck Model Comparison

I took the best algorithm from the previous experiment —
2-Ply Rollout (Greedy) — and ran it 100 times against the
starter Al using the random deck modeling strategy instead
of seeing the opponent’s actual deck and hand. The results
are shown in Figure 8. As expected, it performed consider-
ably worse, getting only around a 30% winrate. This shows
that better belief states are important, but even with the best
belief state — the truth — this approach and the others
do not improve on single-ply algorithms and take longer to
choose actions.

Future Work

Clearly, there is much work to be done. These results are
disappointing because they do not show any evidence that
planning ahead more than one ply is beneficial, and in
many cases it seems detrimental. As an experienced Duelyst
player, I do believe that thinking about the opponent’s moves
is often necessary to win, so the problem here could be
with the static evaluator not being expressive enough to pro-
vide good information about far-future actions. I had trou-
bles with the static evaluator when initially working on this
project, and adding additional values for good minion posi-
tioning greatly improved my winrate for all algorithms (ex-
cept Random, of course). It could be that I need to further
enhance it to make multi-ply planning useful.

Aside from that, I want to explore the interesting results
I obtained with PIMC and perhaps try other unconventional
approaches to simulating the opponent.

Assuming that I can improve my static evaluator or cre-
ate an algorithm that benefits from multi-ply search, I need

to implement a better deck-and-hand modeling method than
just randomly sampling faction cards. Randomly sampling
cards from categories such as their cost and type could al-
low the construction of a reasonable random deck, which
could have the following attributes:

1. The deck contains no more than 3 copies of any one card.

2. 60% of the deck is minions, 30% spells, and 10% arti-
facts.

3. The deck has a good/standard mana curve, which is the
distribution of mana costs of all cards in it.

4. There are more faction minions than neutral minions.

I would expect something like this to perform much better
than a completely random deck that may not even be possi-
ble to build, given the 3-copy limit in deckbuilding.

The next step would be predicting the opponent’s deck
and hand based on the cards that they have played so far,
as Dockhorn et al. (2018) did. There are deck archetypes
in Duelyst, and an experienced human player can figure out
what deck they are playing against after only seeing a few of
the opponent’s cards (unfortunately, creative decks are rare,
especially in higher ranks).

For any future students who want to work on an existing
game like this, my advice would be to create your own sim-
plified version of it first. I ran into numerous issues with Du-
elyst’s codebase that took a while to overcome, and an issue
of slow state copying still plagues me. However, it is cool to
work in a real game’s code. The open-source Duelyst code is
available here (https://github.com/open-duelyst/duelyst) for
anyone interested, although to work on Duelyst I you have
to get permission from Dream Sloth Games like I did.

References
Cowan, A. 2023. Paired comparisons for games of chance.
Dobre, M.; and Lascarides, A. 2018. POMCP with Human
Preferences in Settlers of Catan. Proceedings of the AAAI
Conference on Artificial Intelligence and Interactive Digital
Entertainment.
Dockhorn, A.; Frick, M.; Akkaya, U.; and Kruse, R. 2018.
Predicting Opponent Moves for Improving Hearthstone Al.
In Information Processing and Management of Uncertainty
in Knowledge-Based Systems. Theory and Foundations.
Furtak, T.; and Buro, M. 2013. Recursive Monte Carlo
search for imperfect information games. In Proceedings of
CIG-13).
Gelly, S.; Kocsis, L.; Schoenauer, M.; Sebag, M.; Silver, D.;
Szepesviri, C.; and Teytaud, O. 2012. The Grand Challenge
of Computer Go: Monte Carlo Tree Search and Extensions.
Communications of the ACM.
Ginsberg, M. L. 2011. GIB: Imperfect Information in a
Computationally Challenging Game. CoRR.
Silver, D.; and Veness, J. 2010. Monte-Carlo Planning in
Large POMDPs. In Proceedings of NIPS-10.



